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Synopsis 
By the use of simple n~odela of filled plastics, approxiinat c equatioiis are derived for 

the elongation to break in the case of perfect adhaion between the phases and for the 
tensile strength in the case of no adhesion between the polymer and filler phases. By 
combining these equations with equations for the modulus (assuming Hookean be- 
havior) all the stress-strain properties can be derived, including rough estimates of the 
impact strength, as a function of filler concentration. Among other things, the theory 
predicts a very rapid decrease in elongation to break as filler concentration increases, 
especially for the case of good adhesion. I t  is also predicted for the case of good ad- 
hesion that the tensile strength of a filled polymer can be greater than that of an unfilled 
polymer. 

Introduction 

Except for a number of theories of the elastic modulus of filled polymers, 
very little can be found in the literature to explain the mechanical prop- 
erties of polymers filled with small rigid particles. By using very simple 
models for such systems, it is possible to predict qualitatively and possibly 
semiquantitatively the stress-strain properties as a function of filler con- 
centration for the two cases of perfect adhesion and no adhesion between 
the filler and polymer phases. 

Case of Perfect Adhesion Between Filler and Polymer 

The simplest model is shown in Figure l A ,  in which the filler particles 
are attached to the polymer in a series arrangement. Perfect adhesion is 
assumed between the two phases. Shear effects around the filler particles, 
triaxial stresses in the polymer, and effects due to Poisson’s ratio are all 
neglected at  this point in the analysis. Several other more complex models 
have been casually investigated and appear as a first approximation to 
give roughly the same results as this simple model. Figure 1A shows that, 
for a given elongation of the model, the actual elongation experienced by 
the polymer must be greater. By carrying out a calculation similar to 
that used by Buechel to explain the Mullin’s effect, it is found that the 
actual microscopic elongation (strain) of the plastic relative to the observed 
elongation of the filled system is: 
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Fig. 1. Models for filled polymers. 

E’/E 1/(1 - 4F”a) (1) 

where E’ is the actual elongat,ion of the plastic, E is the overall elongation of 
the filled system defined as ( L  - Lo)/Lo, and 4 F  is the volume fraction of 
the filler. 

If one assumes that the polymer breaks at the same elongation in the 
filled system as the bulk unfilled polymer does, then the elongation to break 
of the filled system relative to the unfilled polymer is: 

E B  (filled)/EB (unfilled) A 1 - C#JF~’~ 
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Fig. 2.  Tlir:orrt.ic~~1 curves for t.he elongatioii to break for the wses of pc.rfc:rl, ntlhcsioti n ~ i d  
t i ( i  :i.cllu$sioti I)e(.wec:ti t.he filler : i i d  pcilytiit.r pIi:wt*s. 



S'I'RESSSTHAIN PROPERTIES OF FILLED POLYMERS 99 

' 0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
VOLUME FRACTION OF FILLER 

Fig. 3. Theoretical curves for the tensile strength of filled polymers. 
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Fig. 4. Theoretical curves for the impact strength (energy under the stress-strain curve) 
of filled polymers. 

EB (filled) is the elongation (ALILO) to break as measured in a tensile 
stress-strain test of the filled system. This relation is plotted as the lower 
curve in Figure 2.  A polymer contairiirig 40 vol.-yo filler should break a t  
an elongation of roughly The curve iri-  
tlicates that siri:tll amourits of filler :ire rclativcly niore tletrimeutsl tli:ui 
large amounts :LS lorig :is :tggreg:tt,ioir t l o c ~  i i o t  o ( ~ u r  :It id 1)erfec.t adliehioii 

that of the uiilillcd polyiner. 
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is maintained. The size of the filler particle does not enter into the equa- 
tion; this is analogous to the theories of the modulus. 

We now wish to calculate other stress-strain properties, such as tensile 
strength and impact strength, i.e., the area under the stress-strain curve. 
At this point our simple model in Figure 1A breaks down and will be aban- 
doned, since it does not allow for the filler particles to carry part of the 
load. In the theories for the elastic moduli of materials, however, stresses 
are applied to the filler particles, so the results of these theories will now be 
combined with our result for the elongation to break. By combining eq. 
(2) with the theoretical cquatioris for the modulus of filled systems coil- 
taining spherical particles, estimates can be made of the tensile strength 
arid impact strength of rigid polymers which have linear (Hookean) stress- 
strain curvcs. It is assumed that tensile strength g n  is given by 

(TB = EEn (3) 

The inipact strength 

(4) 

where h’ is Young’s modulus of the filled polymer. 
(area under stress-strain curve) is assumed to be 

Impact strength = aeee/2 = E€n2/2 

The predicted results are illustrated in Figures 3 and 4 on the basis of the 
theories of Kerner2 and Eilers and Van Dijck3 for the modulus. The equa- 
tions for the moduli are given in the Appendix. 

Both the Kerner and the Eilers-Van Dijck equations give similar results 
for the impact strength but differ greatly on the tensile strength at  high 
filler contents. Both the tensile strength and the impact strength decrease 
drastically with only small amounts of filler. The impact strength con- 
tinues to decrease to low values as the filler concentration increases. How- 
ever, the tensile strength increases with added filler above a volume con- 
centration of about ten per cent. The Eilers-Van Dijck curve even pre- 
dicts a value of tensile strength greater than that of the unfilled polymer 
at high concentrations. Since Kerner’s equation generally predicts a 
modulus that is too low while the Eilers-Van Dijck equation gives values 
more in line with experiment, the experimental values for the tensile 
strength might be eqected to fall near the Eilers-Van Dijck curve. In  
any case, both theories predict a beneficial increase in tensile strength at  
high filler loadings, if good adhesion between filler and polymer can be 
achieved and if the filler particles can be well dispersed without weak aggre- 
gates being formed. 

Case of No Adhesion Between Filler and Polymer 
In the case of no adhesion, the filler particles can not carry any of the 

load, so all the load must be carried by the polymer. In any given cross 
section the fraction occupied by polymer is equal to the volume fraction of 
polymer, so it might be expected that the tensile strength would be equal 
to the product of the teiisilc strength of the unfilled polymer and the volume 
fraction of the polymer. However, thc filler partivles distort the stress 
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fields, so that, when the material breaks, the fracture travels from one filler 
particle or void space to another. Therefore, a model similar to that 
shown in Figure 1B might be more realistic. This model accounts for the 
decrease in cross-sectional area of the polymer phase as filler is added, but 
it does not enable one to calculate the additional factor of stress concentra- 
tion around the particles. Thus, the values of tensile strength calculated 
by this model may be considered as maximum values; stress concentrators 
will lower these values by an undetermined amount. The predicted rel- 
ative tensile strength is given by: 

UB (fihd)/aB (unfilled) N (1 - 4~''')s (5) 

where S is the stress concentration function, which can have a maximum 
value of 1.0 when there is no concentration. Generally S is expected to 
have a value of the order of one-half. Equation (5) is plotted in Figure 3 
for the case where S = 1. The curve shows that the tensile strength de- 
creases rapidly as filler content increases. Surprisingly enough, however, 
a t  volume fractions below about 15yo the no-adhesion curve is higher than 
the curves for perfect adhesion; undoubtedly this is due in part to neglect- 
ing the effect of stress concentrators. Possibly if the effect of stress con- 
centrators could be evaluated, the curve for the case of no adhesion would 
be shifted to below the curves for perfect adhesion. 

If one incorporates eq. (5) into the theory of Sat0 and Furukawa4 for 
the modulus of filled systems with no adhesion. the elongation to break and 
the impact strength can be estimated for the case of no adhesion. (The 
equation of Sat0 and Furukawa is given in the Appendix.) The calculated 
elongation to break is shown in Figure 2. Again neglecting stress concen- 
tration factors, the elongation remains high even at high filler loadings. 
The maximum impact strength is shown in Figure 4. The impact strength 
drops off rapidly and continues to decrease, even a t  high filler contents, in 
contrast to the leveling off for the case of good adhesion. Over most of 
the range, the curve for no adhesion is higher than for the case of perfect 
adhesion. Again, if the stress concentration factor could be computed, 
the no-adhesion curve would probably be shifted to below the other curves 
but would retain the same general shape. 

Summary 

As crude as these simple models are, it appears that they predict the 
same trends and roughly the same values as actually observed experi- 
mentally. These approximate theories clearly show the effects to be ex- 
pected by changes in the strength of the adhesive bond between the polymer 
and filler phases. 

In order to caIculate a11 the stress-strain properties, rigid polymers 
obeying Hooke's law were assumed. However, no such restriction is re- 
quired to use the theory to calculate only the elongation to break for the 
case of perfect adhesion. Likewise, no such restriction on the shape of the 
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stress-strain curve is required to calculate the maximum tensile strength 
for the case of no adhesion. 

Although only polymers were discussed, the theory should be equally 
applicable to any type of material as the matrix. 

APPENDIX 

Kerner’s equation is: 

where GP and GF are the shear moduli of the plastic and filler, respectively, 
Y is Poisson’s ratio of the plastic, and 4p is the volume fraction of the 
plastic. E (filled) and E (unfilled) are the Young’s moduli of the filled 
and unfilled systems. 

The modified Eilers-Van Dijck equation is: 

E (filled)/E (unfilled) = 11 + [1.25+~/(1 - V4F)])’ 

where V = sedimentation volume of filler/true volume of filler.; in the 
calculations in this paper, V = 1.2. 

E (filled)/E (unfilled) 

The equation of Sat0 and Furukawa is: 

{ 1 + [y2/2(1 - y) ] )  (1 - I,&) 
- Tv”!?/(l - Y) Y31 

where& = y3 
and 

J. = (v3/3) (1 + Y - Y2)/(1 - Y + v2) 
and t is the adhesion parameter; 
for no adhesion. 

from the above equation for moduli. 

= 0 for perfect adhesion, and = 1 

The surface effect in the theory of Sat0 and Furukawa has been omitted 
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RBsumB 
E n  utilisant des modbles simples pour des plastiques chargds, on peut ddriver des 

equations approch6es pour des elongations la cassure dans le cas d’une adhBsion parfait 
entre les phases, et pour la force B la tension dans le cas de non-adhdsion entre les poly- 
meres et les charges. En combinant ces Bquations avec les Bquations pour le module (en 
admettant un comportement de Hook) toutes les propridtes de tension-elongation 
peuvent etre derivBes y compris des estimations grossibres de la force l’impact en fonc- 



STRESSSTRAIN PROPERTIES OF FILLED POLYMERS 103 

tion de la concentratlion de la charge. Entr’autres choses la theorie prBdit une diminu- 
t,ion t,r& rapide de 1’Qlongat.ion ii la rupture, quand la concentration en charge croft. 
Dans le cits d’iine bonne adh6sion, la force la tension d’nn polymbre chargd pent etre 
plus elevee clue celle d’un polymEre non charg6. 

Zusammenfassung 
Mit einem einfachen Model1 fur gefullte Kunststoffe werden Naherungsgleichungen 

fur die Bruchdehnung in Falle einer vollkommenen Adhasion zwischen den Phasen nnd 
fiir die Zugfestigkeit im Falle fehlender Adhiision zwischen der Polymer- und der Full- 
stoffphase abgeleitet. Durch Kombination dieser Gleichungen mit Gleichungen fur den 
Modul (unter Annahme eines Hookeschen Verhaltens) konnen alle Spannungs-Dehnung- 
seigenschaften als Funktion der Fullstoff konsentration abgeleitet werden und eine rohe 
Schatsung der Stossfestigkeit gegeben werden. Unter anderem sagt die Theorie, 
besonders fur den Fall einer guten Adhiision, eine sehr rasche Abnahme der Bruchdehnung 
mit steigender Fullstoffkonzentration voraus. Weiters wird fur den Fall guter Adhiision 
vorausgesagt, dass die Zugfestigkeit eines gefullten Polymeren grosser als diejenige eines 
ungefullten Polymeren sein kann. 
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